Солнечные электростанции

СОЛНЕЧНЫЕ ТЕПЛОВЫЕ ЭЛЕКТРОСТАНЦИИ 

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии. 

По способу производства тепла солнечные тепловые электростанции подразделяют на солнечные концентраторы (зеркала) и солнечные пруды. 

СОЛНЕЧНЫЕ КОНЦЕНТРАТОРЫ 

Такие электростанции концентрируют солнечную энергию при помощи линз и рефлекторов. Так как это тепло можно хранить, такие станции могут вырабатывать электричество по мере надобности, днем и ночью, в любую погоду. 
Большие зеркала - с точечным либо линейным фокусом - концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма "Luz Corp." установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %. 
Все описываемые технологии, кроме солнечных прудов, для достижения высоких температур применяют концентраторы, которые отражают свет Солнца с большей поверхности на меньшую поверхность приемника. Обычно такая система состоит из концентратора, приемника, теплоносителя, аккумулирующей системы и системы передачи энергии. 
Солнечное тепло можно сберегать разными способами. Современные технологии включают параболические концентраторы, солнечные параболические зеркала и гелиоэнергетические установки башенного типа. Их можно комбинировать с установками, сжигающими ископаемое топливо, а в некоторых случаях адаптировать для аккумуляции тепла. Основное преимущество такой гибридизации и теплоаккумуляции - это то, что такая технология может обеспечивать диспетчеризацию производства электричества (то есть выработка электроэнергии может производиться в периоды, когда в ней есть необходимость). Гибридизация и аккумулирование тепла могут повысить экономическую ценность производимого электричества и снизить его среднюю стоимость. 

Солнечные параболические концентраторы

 

В этих установках используются параболические зеркала (лотки), которые концентрируют солнечный свет на приемных трубках, содержащих жидкость-теплоноситель. Эта жидкость нагревается почти до 400 оC и прокачивается через ряд теплообменников; при этом вырабатывается перегретый пар, приводящий в движение обычный турбогенератор для производства электричества. Для снижения тепловых потерь приемную трубку может окружать прозрачная стеклянная трубка, помещенная вдоль фокусной линии цилиндра. Как правило, такие установки включают в себя одноосные или двуосные системы слежения за Солнцем. В редких случаях они являются стационарными. 


  Построенные в 80-х годах в южно-калифорнийской пустыне фирмой "Luz International", девять таких систем образуют крупнейшее на сегодняшний день предприятие по производству солнечного теплового электричества. Эти электростанции поставляют электричество в коммунальную электросеть Южной Калифорнии. Еще в 1984 г. "Luz International" установила в Деггетте (Южная Калифорния) солнечную электрогенерирующую систему "Solar Electric Generating System I" (или SEGS I) мощностью 13,8 МВт. В приемных трубках масло нагревалось до температуры 343 оC и вырабатывался пар для производства электричества. Конструкция "SEGS I" предусматривала 6 часов аккумулирования тепла. В ней применялись печи на природном газе, которые использовались в случае отсутствия солнечной радиации. Эта же компания построила аналогичные электростанции "SEGS II - VII" мощностью по 30 МВт. В 1990 г. в Харпер Лейк были построены "SEGS VIII и IX", каждая мощностью 80 МВт. Из-за многочисленных законодательных и политических трудностей компания "Luz International" и ее филиалы 25 ноября 1991 года известили о своем банкротстве. Теперь станциями "SEGS I - IX" управляют другие фирмы по старому контракту с "Southern California Edison". От планов постройки "SEGS X, XI, XII" пришлось отказаться, что означает потерю дополнительных 240 МВт запланированной мощности. 
 
Оценки технологии показывают ее более высокую стоимость, чем у солнечных электростанций башенного и тарельчатого типа (см. ниже), в основном, из-за более низкой концентрации солнечного излучения, а значит, более низких температур и, соответственно, эффективности. Однако, при условии накопления опыта эксплуатации, улучшения технологии и снижения эксплуатационных расходов параболические концентраторы могут быть наименее дорогостоящей и самой надежной технологией ближайшего будущего.


Солнечная установка тарельчатого типа 


Этот вид гелиоустановки представляет собой батарею параболических тарелочных зеркал (схожих формой со спутниковой тарелкой), которые фокусируют солнечную энергию на приемники, расположенные в фокусной точке каждой тарелки. Жидкость в приемнике нагревается до 1000 оС и непосредственно применяется для производства электричества в небольшом двигателе и генераторе, соединенном с приемником. 
В настоящее время в разработке находятся двигатели Стирлинга и Брайтона. Несколько опытных систем мощностью от 7 до 25 кВт работают в Соединенных Штатах. Высокая оптическая эффективность и малые начальные затраты делают системы зеркал/двигателей наиболее эффективными из всех гелиотехнологий. Системе из двигателя Стирлинга и параболического зеркала принадлежит мировой рекорд по эффективности превращения солнечной энергии в электричество. В 1984 году на Ранчо Мираж в штате Калифорния удалось добиться практического КПД 29%. 
Вдобавок к этому, благодаря модульному проектированию, такие системы представляют собой оптимальный вариант для удовлетворения потребности в электроэнергии как для автономных потребителей (в киловаттном диапазоне), так и для гибридных (в мегаваттном), соединенных с электросетями коммунальных предприятий. 
Эта технология успешно реализована в целом ряде проектов. Один из них - проект STEP (Solar Total Energy Project) в американском штате Джорджия. Это крупная система параболических зеркал, работавшая в 1982-1989 гг. в Шенандоа. Она состояла из 114 зеркал, каждое 7 метров в диаметре. Система производила пар высокого давления для выработки электричества, пар среднего давления для трикотажного производства, а также пар низкого давления для системы кондиционирования воздуха на той же трикотажной фабрике. В октябре 1989 г. энергокомпания закрыла станцию из-за повреждений на главной турбине и нехватки средств для ремонта станции. 
Совместное предприятие "Sandia National Lab" и "Cummins Power Generation" в настоящее время пытается поставить на коммерческие рельсы систему мощностью 7,5 кВт. "Cummins" надеется продавать 10 000 единиц в год к 2004 г. Совместным использованием параболических зеркал и двигателей Стирлинга заинтересовались и другие компании. Так, фирмы "Stirling Technology", "Stirling Thermal Motors" и "Detroit Diesel" совместно с корпорацией "Science Applications International Corporation" создали совместное предприятие с капиталом 36 млн долларов с целью разработки 25-киловаттной системы на базе двигателя Стирлинга. 
Солнечные электростанции башенного типа с центральным приемником 

В этих системах используется вращающееся поле отражателей-гелиостатов. Они фокусируют солнечный свет на центральный приемник, сооруженный на верху башни, который поглощает тепловую энергию и приводит в действие турбогенератор. Управляемая компьютером двуосная система слежения устанавливает гелиостаты так, чтобы отраженные солнечные лучи были неподвижны и всегда падали на приемник. Циркулирующая в приемнике жидкость переносит тепло к тепловому аккумулятору в виде пара. Пар вращает турбину для выработки электроэнергии, либо непосредственно используется в промышленных процессах. Температуры на приемнике достигают от 538 до 1482 оC.
Первая башенная электростанция под названием "Solar One" близ Барстоу (Южная Калифорния) с успехом продемонстрировала применение этой технологии для производства электроэнергии. Предприятие работало в середине 1980-х. На нем использовалась водно-паровая система мощностью 10 МВтэ. В 1992 г. консорциум энергетических компаний США принял решение модернизировать "Solar One" для демонстрации приемника на расплавленных солях и теплоаккумулирующей системы. Благодаря аккумулированию тепла башенные электростанции стали уникальной гелиотехнологией, позволяющей диспетчеризацию электроэнергии при коэффициенте нагрузки до 65%. В такой системе расплавленная соль закачивается из "холодного" бака при температуре 288 оC и проходит через приемник, где нагревается до 565 оC, а затем возвращается в "горячий" бак. Теперь горячую соль по мере надобности можно использовать для выработки электричества. В современных моделях таких установок тепло хранится на протяжении 3 - 13 часов. 

"Solar Two" - башенная электростанция мощностью 10 МВт в Калифорнии - это прототип крупных промышленных электростанций. Она впервые дала электричество в апреле 1996 г., что явилось началом 3-летнего периода испытаний, оценки и опытной выработки электроэнергии для демонстрации технологии расплавленных солей. Солнечное тепло сохраняется в расплавленной соли при температуре 550 оC, благодаря чему станция может вырабатывать электричество днем и ночью, в любую погоду. Успешное завершение проекта "Solar Two" должно способствовать строительству таких башен на промышленной основе в пределах мощности от 30 до 200 МВт. 

Сопоставление технических характеристик 



В таблице сведены ключевые характеристики трех вариантов солнечной тепловой электрогенерации. Башни и параболоцилиндрические концентраторы оптимально работают в составе крупных, соединенных с сетью электростанций мощностью 30-200 МВт, тогда как системы тарельчатого типа состоят из модулей и могут использоваться как в автономных установках, так и группами общей мощностью в несколько мегаватт. Параболоцилиндрические установки - на сегодня наиболее развитая из солнечных энергетических технологий и именно они, вероятно, будут использоваться в ближайшей перспективе. Электростанции башенного типа, благодаря своей эффективной теплоаккумулирующей способности, также могут стать солнечными электростанциями недалекого будущего. Модульный характер "тарелок" позволяет использовать их в небольших установках. Башни и "тарелки" позволяют достичь более высоких значений КПД превращения солнечной энергии в электрическую при меньшей стоимости, чем у параболических концентраторов. Однако, остается неясным, смогут ли эти технологии достичь необходимого снижения капитальных затрат. Параболические концентраторы в настоящее время - уже апробированная технология, ожидающая своего шанса на совершенствование. Башенные электростанции нуждаются в демонстрации эффективности и эксплуатационной надежности технологии расплавленных солей при использовании недорогих гелиостатов. Для систем тарельчатого типа необходимо создание хотя бы одного коммерческого двигателя и разработка недорого концентратора.

Характеристики солнечных тепловых электростанций (по состоянию на 1993 г.) 

 

Параболический концентратор 

 "Тарелка"

Электростанция башенного типа 

Мощность 

 30-320 МВт

 5-25 МВт

 10-200 МВт

Рабочая температура (C/F)

 390/734 

 750/1382

 565/1049

Коэффициент готовности

 23-50 %

 25 %

 20-77 %

Пиковый КПД

 20%(d)

 29.4%(d)

 23%(p)

Практический годовой КПД

11(d)-16%

12-25%(p) 

7(d)-20%

Промышленное применение

Прототип, пропорциональный промышленной установке

В стадии демонстрации 

 Существующие демонстрационные проекты

Риск, связанный с развитием технологии 

 Низкий

  Высокий 

 Средний

Аккумулирование тепла

 Ограничено

 Аккумулятор

 Да

Гибридные системы

 Да

Да 

 Да

Стоимость, доллар/Вт

 2,7-4,0

 1,3-12,6

 2,5-4,4

(p) = прогноз; (d) = факт; 

Сравнение основных солнечных тепловых технологий

 

Параболический концентратор

"Тарелка" 

Электростанция башенного типа 

Где применяется 

Соединенные с сетью электростанции; техническое тепло для промышленных процессов.

Небольшие автономные энергоустановки; поддержка сети

Соединенные с сетью электростанции; техническое тепло для промышленных процессов

Преимущества

Диспетчеризация пиковой нагрузки; накоплено 4500 ГВтч опыта работы на коммерческом рынке; гибридная система (солнечная энергия/ископаемое топливо).

Диспетчеризация нагрузки, высокий коэффициент преобразования; модульность; гибридная система (солнечная энергия/ископаемое топливо).

Диспетчеризация базовой нагрузки; высокий коэффициент преобразования; аккумулирование тепла; гибридная система (солнечная энергия/ископаемое топливо).





Некоторые экономические и конструкторские проблемы тепловых солнечных электростанций 

Стоимость электричества, произведенного тепловыми солнечными электростанциями, зависит от множества факторов. Среди них капитальные затраты, эксплуатационные затраты и расходы на техническое обслуживание, производительность системы. Однако важно заметить, что стоимость технологии и конечная стоимость выработанной электроэнергии подвержены существенному влиянию внешних факторов, не относящихся непосредственно к данной технологии. Например, параболические концентраторы и башни в виде небольших автономных установок могут стоить весьма дорого. Чтобы снизить их стоимость и сделать конкурентоспособными по отношению к современным электростанциям, работающим на органическом топливе, необходимо постепенно повышать их мощность и строить солнечные энергоцентры, где на одной площадке размещаются несколько энергетических объектов. Вдобавок, поскольку эти технологии замещают традиционные виды топлива, налоговое регулирование может оказать значительное влияние на их конкурентоспособность 

Конструктор сайтов - uCoz